BERKELEY PUBLICATION

03.28.2022 AND RESEARCH INTERNATIONAL

Journal of Health, Metabolism & Nutrition Studies Vol. 19 No. 3

OMPARATIVE ANALYSIS OF RANDOM FOREST-NEURAL NETWORK CLASSIFICATION TECHNIQUES FOR LUNG CANCER DISEASE DIAGNOSIS

AHMED, ABIODUN TAOFIK

School of Information and Communication Technology, Department of Computer Science, Kwara State College of Arabic and Islamic Legal Studies, Ilorin. PMB 1579

ABSTRACT

ancer is term to be the most disastrous and threatening disease universally among different diseases. The statistics shows that around more than fifty million cases were diagnosed around 10.2 million demise occurred in 2020.

The therefore, paper adopts two classification algorithms Multilaver Perceptron (MLP) and Random Forest (RF) for comparison on analysis of lung cancer microarray dataset. The experimental analysis was performed on weka Version 3.6.10 enviroment. It was observed that the multilayer perceptron (MLP) gives an accuracy of 68%, sensitivity of 69% and total time to build model of 992.64seconds while random forest (RF) gives an accuracy of 86%, sensitivity of 86% and total time to build

Introduction:

Cancer is term to be the most disastrous and threatening disease universally among different The statistics diseases. shows that around more than forty million cases were diagnosed more than 10.2 million demise occurred in 2020, by cancer which is high than that of 2016 was millions present cases are million which as kill people due to cancer. GLOBOCAN 2020 shows that cancer (lung) is the actual cause of mortality worldwide. This is the fact that cancer is not easily detected in the beginning but difficult to overcome at

03.28.2022	Pg.132

International Journal of Health, Metabolism and Nutrition Studies

model of 94seconds. The results obtained show that random forest (RF) outperforms multilayer Perceptron (MLP) classifier.

he end stage. If the identified lung nodules can be accurate at initial stage, the patient's survival rate can actually be increased by a certain percentage. Now days, automated diagnostic systems play important role of detecting any kind of disease. Diagnostic machine built especially for medical diagnosis leads to solution which will help in decreasing mortality rate and these diagnostics medical systems or machine helps in discovering cancer at early stage which is mostly important in bioinformatics.

Artificial intelligence's (A I) is used in different field like cancer diseases diagnosis. It was reveal by Cancer Society of American (2020) that cancer begins when a particular cell in segment of the body begins to increase out of proportion. Cancer has different kinds, but they all begins to grow of uncommon cells. There are different in cancer growth than that of the normal cell growth. Instead of dying, there's formation of abnormal cells. Cells can also intrude other tissues, where the normal cells cannot intrude. The invading of other tissues can cause disorder to the cell of the body which is a cancer cell. Cancer Society in American (2018). recent cases of cancer is more than 4,548 per 200,000 men and women per year statistic 2013 til 2018 cases, the statistics of cancer death is more than 1,712 per 200,000 men and women per year statistics 2003 til 2018 death. In 2019more than 15,780 of babies and adolescent between age of 0 - 19 who are diagnosed with the disease and 1,960 were lost to the disease. In 2019, more than fourteen (14) million recent cases and Eight (8) million cancer - related death worldwide. The statistics of recent cases of cancer will rise to twenty two million within the next twenty years. Above 60 percent (%) of the world recent cancer cases happened in Africa, Asia, and Central South America, 70 percent (%) of cancer deaths also happen in this region. Detecting of cancer at initial stage is the key to its cure. The disease detection is crucial, real-global medical problem; this disease is deadly diseases in the world (Ganesan, et al., 2021).

Pg.133

International Journal of Health, Metabolism and Nutrition Studies

Problem Statement

Detecting of cancer at initial stage is the key to its cure. The disease detection is crucial, real-global medical problem; this disease is deadly diseases in the world (Ganesan, et al., 2018).

The competent of the physician to effectively diagnose and cure cancer is directly dependent on their cancer detection at the initial stages before it is too late. According to 'World Health Organization'WHO (2020), cancer is a group of diseases that can destroy the body. Other terms used are malignant and neoplasms. Cancer feature is fast creation of strange cells that grow above their usual proportions, and which can flow into adjoining area and flow to other segment in body system. This is called metastasis. This is the cause death majorly from cancer.

Aim and objective of the study

The aim of this research is for comparison of two classification algorithms Multilayer Perceptron" (MLP) and Random forest (RF) algorithm for lung cancer disease diagnosis respectively using microarray data.

The objectives are:

- 1. Employ develop a classification model of lung cancer disease using multilayer perceptron and Random forest model.
- 2. Implement the bid model on WEKA environment based on performance metrics
- 3. Compare the precision of two classification algorithms.

Scope of the Study

The scope is to analysis two classification algorithms Random Forest and Multilayer Perceptron in solving Health care problems, specifically for the detecting lung cancer patients. Both RF and NN will be implemented on WEKA. Random Forest and Multilayer perceptron' models built on a system for identifying lung cancer using microarray data. A comprehensive learning of neural network such as (learning process, transfer function, back-propagation algorithm, feed-forward networks, network layers,

perceptron, selection of weights, data description and training of data) and main ingredients of RF algorithm such as bootstrap, bagging, split, fitness, selection and crossover are implemented. The time complexity, Specificity, accuracy and sensitivity will be checked to see if there are changes

Literature Review

According to Cancer Research UK (2020), bodies receive oxygen through the lungs and pass it into the bloodstream so that it can circulate to everybody cell. The muscles of our chest and a large flat muscle under the lungs (the diaphragm – pronounced di-a-fram) are used to draw air into the lungs. The diaphragm is at the base of the chest cavity, just above the stomach. The chest cavity is sealed so that when you breathe in and the muscles make it bigger, this creates a vacuum inside, which draws air in through your nose and down into the lungs.

According to American Canser Society (2021), cancer can be described as a group of diseases characterized by the uncontrolled growth and spread of abnormal cells. If the spread is not controlled, it can result in death. Cancer is caused by both external factors (tobacco, infectious organisms, chemicals, and radiation) and internal factors (inherited mutations, hormones, immune conditions, and mutations that occur from metabolism). These causal factors may act together or in sequence to initiate or promote the development of cancer. Ten or more years often pass between exposure to external factors and detectable cancer.

History of Random Forest Algorithm

Random decision forest was first proposed by Tin Kam Ho of Bell Labs in 1995. This method combined Breiman's idea on bagging and the random selection of features. This classifier using different decision tree models it is also used for classification and it accuracy, variable important information is provided with the results. Random forest is a learning method implemented by increasing many classification trees and having them "vote" for a decision according to a majority role. Breiman (2019) initiate random forests, which add an additional layer of randomness to

bagging. In addition to building each tree using various bootstrap samples of the data, random forests replace how the classification or regression trees are constructed. In standard trees, each node is divided using the best split among all variables.

History of Artificial Neural Network

Neural networks have had a unique history in the realm of technology. Unlike many technologies now a days which either immediately fail or are immediately popular, neural networks for popular for a short time, took about 20 years hiatus, and have been popular ever since (Eric, 2019). The researcher led the first effort to simulate a neural network. The perceptron analysed added sum of the inputs, subtracts a threshold, and passes one of two possible numbers out as the output. Unfortunately, the perceptron is limited and was proven as such during the "disillusioned years" in Marvin Minsky and Seymour Papert's in 1969 book Perceptrons. Bernard Widrow and Marcian Hoff of Stanford in 1959, the models were built called ADALINE and MADALINE. MADALINE was the first neural network to solve real world problem.

Review of Related Works

Abraham (2020), compared several machine algorithms for learning cancer disease diagnosis. This research shows the usefulness of learning algorithms like RF, Majority, Nearest Neighbors and Best Z-Score were compared on diagnosing cancer from gene showing level of data. Two dataset were used, a breast cancer dataset which classified cancers into basal and luminal, and a colorectal cancer dataset which determine if a cancer has a mutation in the gene. Best Z-Score and Nearest Neighbors algorithms were the better among others and they used all features in the classification. Decision Tree used only 13 features for classifying a sample and gave mediocre results while the worst algorithm was Majority because the algorithm did not look at any feature. Also, the researcher expressed that all algorithms were fast to train and test except decision tree which was slow because it had to help each feature in turn, calculating the

03.28.2022	
------------	--

Pg.136

International Journal of Health, Metabolism and Nutrition Studies

information achieve of every possible choice of outpoint. However, the researcher does not pre-process the data to remove features (reduce dimensionality of the gene dataset feature selection) that are unlikely to be useful. The feature selection helps many algorithms by removing noise and speed up the training. Also, the researcher applied these techniques on breast cancer dataset and colorectal cancer dataset.

Khalid and Atif (2019) presented an evaluation of learning techniques for cancer prediction based on microarray data, various techniques were implied on prostate cancer dataset in oder to accuratly predict cancer class. The reserchers applied combination of statistical method like interquartile range and t-test, which has been effective in fitering significant genes and minimizing noices from data. However, each technique were handle monolthically on the prostate cancer dataset and this approch does not uselung cancer dataset.

Jehad Ali, Rehanullah Khan, Nasir Ahmad, Imran Maqsood (2020) they compared classification results of two models. RF and the J48 for classifying 20 versatile datasets they took data sets containing instances varying from 148 to 20000 respectively. They compared the performance metric obtained from methods. RFs and Decision Tree (J48). The classification parameters consist of Performance metric e.g recall, TP rate, precision and accuracy. They discussed everything about the models for large and small data sets. The classification results show that RF gives better analysis for the same number of attributes and large data sets. The breast cancer analysis of data set show that when the number of instances increased from 286 to 699, the percentage% of correctly classified instances increased from 69.23% to 96.13% for RF dataset with same number of attributes but having more instances, the Random Forest accuracy increased.

RESEARCH METHODOLOGY

The proposed system starts with the microarray lung cancer after which pre-processing of data is performed, data cleaning, data partitioning after which data interpretation is performed then MLP and RF algorithms is

applied on the dataset. Afterward, the analyses of the RF and MLP are noted and the performance metrics, accuracy, specificity, precision and time of building the model is compared to evaluate the best algorithm.

Architecture of the proposed system

Neural Network for the classification of cancer disease

Artificial Neural Network

Classification is a task that is often encountered. The process classification involves assigning objects into predefined groups or classes based on a number of observed attributes related to those objects. Although there are some more traditional tools for classification, such as certain statistical procedures, neural networks have shown an effective solution to the problems. There are advantages of using neural networks, they are data driven, they are self-adaptive, they can approximate any function structure as well as non-structure (which is quite important in this case because groups often cannot be divided by linear functions). Neural networks classify objects rather simply - they take data as input, derive rules based on those data, and make decisions.

Results and Discussion

The goal of this research is comparison of "multilayer perceptron and Random forest algorithm" for lung cancer disease diagnosis based on microarray data.

The implementation was done on Weka (Waikato Environment for Knowledge Analysis) which was developed at the University of Waikato,

New Zealand. Weka is written in Java and commonly used for machine learning. Its features include pre-processing, classification, clustering, visualization, feature selection and association among others.

Proposed approach and System Specifications

The experiments were carried out on a 64-bit operating system with Windows 8.0, Intel(R) Core(Tm) i7- 3632QM CPU @ 2.20GHz and 8 GB of RAM. Expected to the iterative nature of the experiments and resultant processing power required, the Java heap size for WEKA version 3.6.12 was set to 2024MB to assess the efficiency of these algorithms.

Result of Neural Network multilayer Perceptron

The performance of a good classifer become more pronouced when subjected to a number of salient features. Figure 4.1 shows the preprocessing stage. Multilayer perceptron model was trained with 203 instances consisting of 12601 reduced attributes. Also, figure 4.2 illustrates the instances and attributes of the neural network classifer during training with 100% correctly classified instances. The figure also shows the number of incorrectly classified instances, Kappa statistic, Mean absolute error, Root mean squared error, Root relative squared error and total number of instances used for the training. The detailed accuracy by classifier model such sigmoid node 0, sigmoid node 1 and 2 are depicted in figure 4.3.

2				w	eka	Explorer					
reprocess C	lassify C	luster Associa	te Select attribute	s Visualize							
Open file Open URL Open DB					Gene	rate	Undo	Edit	dit Save		
Filter											
Choose	None									Apply	
Current relati Relation: I Instances: 3	on ung_cance 203	r_5c_12600g	Attributes: 12601			Selected attril Name: APT Missing: 0 (0	bute FX-MurIL2_at 5%) Dis	dinct: 202	Type: Nu Unique: 20	meric 1 (99%)	
Attributes						Statistic	1965	Value		- C - C - C - C - C - C - C - C - C - C	
	11				-	Minimum		-59.53			
All		None	Invert	Pattern	_	Maximum		92,68			
	i i i i i i i i i i i i i i i i i i i					Mean		-7.879			
140.	riame				731	StdDev		20,561			
2	APPX NU	rit in at			-						
	AFFY MU	rtt d. at			-						
4	AFEX-MU	FAS at									
5	APPX-BIO	B-5_at				Class: tune (b)	and the second			Visualize All	
6	AFFX-Bio	B-M_at				Consul cable for	any		7.1	a tarchening of 1940	
7	AFFX-BIO	8-3_et									
8	AFFX-Bio	C-5_at					60				
9	APPX-Bio	C-3_at									
10	AFFX-Bio	Dn-5_at					42				
11	AFFX-Bio	Dn-3_at			_		24	22			
12	AFFX-Cre	ex-5_at			-						
13	AFFX-Cre	ax-3_at			v			14			
1.00		SMA-570			10 pr	11		No.			
		Rend	ive			2		4	2 0	0 1	
						-59,62		16.59		92.6	
Statua									I I STORE	1	
OK									Log	1000	

: Preprocess stage

03.28.2022

Pg.140

Vol. 19, No. 3

International Journal of Health, Metabolism and Nutrition Studies

est options	Classifier output
Use training set Supplied test set Set Cross-validation Polds Percentage split % More options	Run information Scheme:weka.classifiers.functions.MultileyerPerceptron -L 0.3 -N 0.2 -H 500 Relation: lung_cancer_Sc_12600g Instances: 203 Attributes: 12601 [list of attributes contted]
Nam) type Darr Stop tesuit list (right-dick for outports) (117 J. 1. Con Sons M. Harverte, 1993)	Test moderevaluate on training data Classifier model (full training set) Sigmoid Mode 0 Inputs Weights Threshold 0-16496863932255673 Node 5 0.9699200675510071 Node 6 0.9699200075510071 Node 6 0.9699200075510071 Node 6 0.969900075510071 Node 6 0.969900075510071 Node 6 0.96990003734002 Node 5 -0.813319570144027 Sigmoid Mode 2

MultilayerPerceptron instances and attributes

This shows the accuracy of the neural network classifier when subjected to testing dataset. The classifer acheived accuracy of 69% with false positive (FP) rate 68.5%. The confusion marix is shown in Figure 4.3.One hundred and thirty nine (139) instances were correctly classified out of the 203 instances used for testing and sixty four (64) incorrectly classified instances was observed from the experiment as depicted in figure 4.4. The model also achieved good true positive (TP) rate, FP rate, precision, recall, f-measure and receiver operating characteristic Receiver Operative Curve

Character Classifier	Select attributes Vis	ualize 0 -5 0 -E 20 -H 2	-G -R					
est options	Classifier output							
Use training set	Relative abs	olute error		101.05	07 8			
	Root relative	aquared en	TOT	99.24	93 8			
_) Supplied test set Set	Total Number	of Instance		203				
Cross-validation Folds 10								
O Percentage split % 55	Detailed	Accuracy By	Class					
More options		TP Bate	FP Bate	Precision	Becall	E-Measure	BOC Area	Class
		1	1	0.685	1	0.813	0.708	1
iom) twos		ō	ō	0	ō	0	0.197	2
wind the		0	0	0	0	0	0.9	3
Start Stop		0	0	0	0	0	0.635	4
		0	0	0	0	0	0.999	5
1:17:41 - functions.MultilayerPerceptron	Weighted Avg	. 0.685	0.685	0.469	0.685	0.557	0.692	
	Confusion	n Matrix ===						
	a b c	d e -	classif	ied as				
	139 0 0	0 0 1	a = 1					
	17 0 0	0 0 1	b = 2					
	6 0 0	0 0 1	o = 3					
	21 0 0	0 0 1	a = 4					
	20 0 0	0 0 1	e = 5					

Performance of neural network classifier

03.28.2022

Pg.141

Vol. 19, No. 3

International Journal of Health, Metabolism and Nutrition Studies

Choose MultilayerPerceptron -L 0	1.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H 2	-G -R					
est options	Clausifier output						
Our training set	Fares construction and a		12/2020/21/22			-	
O Supplied test set Set	Time taken to build mode						
Cross-validation Polds 10	Evaluation on traini	ing set	e e e e e e e e e e e e e e e e e e e				
O Percentage split % 66	Summary						
More options	Correctly Classified In-	stances	139	60,4729			
	Incorrectly Classified 1	Instances	64		31.5271	•	
iom) type 🗸 🗸 🗸	Kappa statistic		0				
	Mean absolute error		0.20	61			
Start	Relative absolute error						
ssult list (right-click for options)	Root relative squared en	FFOF	99.2493 %				
8:17:41 - functions Multileys/Perceptron	Total Number of Instance		203				
	Detailed Accuracy By	Class					
	TF Babe	FF Rate	Precision	Recall	F-Measure	ROC AFER	
	1	1	0.605	1	0.013	0.708	
	0	0	0	0	0	0.197	
	0	0	0	0	0	0.9	
	0	0	0	0	0	0.635	
		<u>.</u>	8	×	. .	0.000	

Correctly classified and incorrectly classified instances

Indicates the confusion matrix which entails the TP rate, FP rate and precision.

```
=== Confusion Matrix ===
            d e <-- classified as
     b
  а
         С
139
     0
        0
           0 0 | a = 1
 17
     0 0 0 0 0
                    b = 2
  6
     0 0 0 0 0
                   c = 3
 21
     0
         0 0
                0 1
                    d = 4
 20
      ٥
         0
            0
                0 |
                    e = 5
```

Confusion matrix of MLP

Random forest algorithm

RF is the combination of tree predictors i.e every tree relies on the number of a random vector sampled independently, selection of features randomly split each node which yields error rates that compare favourably to

03.28.2022	Pg.142
Vol 19 No 3	
von 15, NO. 5	International Journal of Health. Metabolism and Nutrition Studies

Adaboost (Freund and Schapire,(1996), but are more robust with respect to noise. estimate of internal error is monitored, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

Below figure shows the pre processing stage of the random forest algorithm, this stage is the initial start up of the algorithm.

Preprocessing stage

Classifier	Select attributes Visualize	14
Choose RandomForest -I 10 -K 0 -	51	
Test options	Classifier output	~
Supplied test set Set Cross-validation Polds 10 Percentage split % 66 More options	Scheme:weka.classifiers.trees.RandomForest -I 10 -K 0 -S 1 Relation: lung_cancer_50_12600g Instances: 203 Attributes: 12601	
(Nom) type ~	Test mode:10-fold cross-validation Classifier model (full training set)	
Result list (right-click for options) 12:51:09 - trees RandomPorest	Random forest of 10 trees, each constructed while considering 14 random f Out of bag error: 0.1921 Time taken to build model: 0.24 seconds	tes
	Stratified oross-validation Summary Correctly Classified Instances 174 85.7143 Incorrectly Classified Instances 29 14.2857 <	~

Random forest classifier model

03.28.2022	

International Journal of Health, Metabolism and Nutrition Studies

Illustrates the time taken to build the model for the classifier. Its depicts the total time to build up the model.

'est options	Classifier	outpr	at										
Use training set	ROOL 4	#1A	11.1/#	ware	LA 2 PHO	1 03	****		65.40	65 5			1
Supplied test set	Total	Numb	261	of 1	nar.	inc:	0.25		203				
Cross-validation Polds 10	man De	tei)	Led 1	Acou	many	. Pa	e: 01,	6.0.0 ····	(m)				
Percentage split % 166	And An Proceedings							1100	· ////////////////////////////////////	22.20.20.20			
More options				1.1	0.93	in the second se	2.0	Rate 0.375	D.85	D-979	D.91	D. 955	1
	81				0.58	e		0	1	0.588	0.741	0.979	
vom) type	1				0			0	0	0	0	0.797	
	4				0.47	-41		0.016	0.769	0.476	0.565	0.917	
start stop	100000000000000000000000000000000000000	02.621.12	2023		0.9			0.011	0.9	0.9	0.9	0.998	
tesuit list (right-click for options)	weighte	ea ,	COLOR 1-		0,88	1.40		0.20	0.034	0:007	0,834	0+995	
2131.04 - Trees, RandomPorest	Cc	meur	1.00	Bat	11.11								
		30			-	1		-1	Field on				
	136	0	0	2	1	1 -		- 1					
		10	0	3	0	1	80	- 7					
	5	0	0	0	1	1	0						
	11	8		10			-	- 4					
	*	<u> </u>	9	10	TG								
													1
I													

Performance of Random forest classifier

Pg.143

This shows the accuracy of the Random forest classifier when subjected to testing dataset. The classifer acheived accuracy of 86% with false positive (FP) rate 0.26%. The confusion marix is shown in Figure 4.9. The model also achieved good true positive (TP) rate, FP rate, precision, recall, f-measure and receiver operating curve (ROC) area.

a	b	С	d	e		<	c]	lassified	as
136	0	0	2	1	Т	a	=	1	
6	10	0	1	0	Т	b	=	2	
5	0	0	0	1	Т	С	=	3	
11	0	0	10	0	Т	d	=	4	
2	0	0	0	18	Т	e	=	5	

Confusion matrix of Random forest classifier

Performance Metrix

In the information retrieved senario, intances are documents and the task into return set of relevant documents given a search term or equivalent to :

i. Sensitivity : Also known as True Postive (TF)

Pg.144

Vol. 19, No. 3

International Journal of Health, Metabolism and Nutrition Studies

$$\frac{\text{TPR}}{\text{TP + FN}} = \text{TP}$$

- ii. Specificity : Also known as True Negeative rate $\frac{TNR = TP}{TP + FN}$
- iii. Accuracy: TP + TN = TP + TN

- iv. Precision: Postive Prediction Rate $\frac{TP}{TP + FP} = p$
- v. Recall: TPR = Sensitivity $\frac{TP}{TP + FN} = r$

vi.
$$F$$
 –Measure : 2 Pr
 P + r

Table 1: Evaluation of MLP and RF performance

Performance metrics		
	MLP	RF
Accuracy (%)	69	86
TP rate/ Sensitivity(%)	69	86
FP rate(%)	69	26
Precision	47	83
Recall	69	86
F- Measure	56	83
TTBM (in Sec.)	992.64	94

BERKELEY RESEARCH & PUBLICATIONS INTERNATIONAL

Bayero University, Kano, PMB 3011, Kano State, Nigeria. +234 (0) 802 881 6063,

Chart of Performance Metrics of classifier algorithms

From the table 1, two Algorithms (MLP, RF) were used for lung cancer classification; it took MLP algorithm 992.64secs to build the execution model, with correctly classification accuracy of 69%, TP rate 69%, sensitivity 69%, FP rate 69% and Precision 47%. RF algorithm builds its model within 94secs, with correctly classification accuracy of 86%, TP rate 86%, sensitivity 86% ,FP rate 26 % and Precision 83%.

SUMMARY

Classification models in microarray technology play useful role in diagnosing and predicting diseases in medical research. There are extensive researches seeking the best methods of improving the classification precision of lung cancer. Different methods are statistical based methods. However, these methods result accuracy still need more attention. In this dissertation, two algorithms are proposed. These are multilayer Perceptron model (MLP) and Random forest (RF) algorithms. The two algorithms were investigated for the classification of lung cancer disease. The analysis was performed on WEKA environment. Experimental result indicates that the RF outperforms the MLP algorithms in accuracy.

CONCLUSION

This research work studies the different methods for classifying Microarray data analysis (lung cancer as a case study). Two classification methods were used, namely multilayer perceptron (MLP) and Random forest (RF) on a lung cancer dataset. This shows that the Random Forest (RF) algorithm is significantly more accurate than Multilayer Perceptron

(MLP). Data pre-processing significantly improves accuracies of the two algorithms. It was also found out that there is much evidence to support the performance difference between the MLP and the RF method. The average precision/ accuracy of RF are much higher than that of MLP algorithm. A possible explanation is that they are two different classification schemes, and hence one may be able to suits for a data set whereas the other does not.

RECOMMENDATION

This study investigates the classification of microarray dataset. These algorithms are used MLP and RF. The future work can be done to develop a system to work on the accuracy of RF classifier on a pre-processed microarray dataset. Another area that can be of interest is to compare the result between already pre-processed classified data and the classification of raw microarray dataset. Another area that can be of interest is to compare the result between already pre-processed classified data and the classification of raw microarray dataset. It helps the future researchers to know which dataset is best and suitable for the two algorithms compared and also it helps the future researchers to know the exact area to improve on as to help in solving health problem by using different algorithm

REFERENCES

America Cancer Society (2020) America cancer society

America Cancer Society (2021) America cancer society

Abraham, K. (2020). Machine Learning Algorithms for Cancer Diagnosis.

Breiman Leo (2019) Random Forests--Random Features. Technical Report 567 September Statistics Department University of California Berkeley, CA 94720.

Cancer Research UK. (2014). The Lung.

Eric, R. S. (2019). Neural Networks.

Ganesan, N., Venkatesh, K., Rama, M. A., & Malathi, P. A. (2021). Application of Neural Networks in Diagnosing Cancer Disease Using Demographic Data. International Journal of Computer Applications, Volume 1 - No. 2

Jehad Ali, et- el (2020): Random Forest and Decision Tree IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012 ISSN (Online): 1694-0814 <u>www.IJCSI.org</u>274

Khalid, R., & Atif, N. H. (2019). A Comprehensive Evaluation of Machine Learning Techniques for Cancer Class Prediction Based on Microaray Data. International Journal of Bioinformatics Research and Applications.

World Health Organization (2020)

