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Abstract 
This paper transformed the model equations of casson fluid flow with 
Arrhenious function over an exponential stretching sheet from non-linear 
partial differential equations (PDE) to ordinary differential equations 
(ODE) using suitable similarity transformation. The transformed 
equations were solved using iteration perturbation method. The graphical 
illustrations were provided and it was observed that velocity profile 
decreases with increase in casson, magnetic, permeability and porosity 
parameters while increase in ratio parameter, thermal and solutal grashof 
numbers enhance the velocity profiles, Soret number increse the 
concentration profile while chemical reaction parameter, activation energy 
parameter and schmidtl number decrease the concentration profile. 
Increase in magnetic parameter, radiative parameter, heat source, dufour 
number, chemical reaction and activation energy parameters enhance the 
temperature profile while increase in prandtl number decreases the 
temperature profile.  
 

Keywords: Activation energy, Casson fluid, Chemical reaction, Stretching 
sheet, Non-Newtonian,  

 

Introduction 
A fluid in which the viscous stresses arising from its flow at every point are 
linearly proportional to the rate of change in its deformation over time is 
called Newtonian fluid. This means that in a Newtonian fluid, the 
relationship between the shear stress and the shear rate are linear with the 
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proportionality constant referred to as the coefficient of viscosity. On the 
other hand, a fluid whose flow properties are different in any way from that 
of the Newtonian fluid is called a non-Newtonian fluid. Casson fluid is 
classified as a non-Newtonian fluid due to its rheological characteristics. 
These characteristics show shear stress-strain relationships that are 
significantly different from Newtonian fluid. Many researchers have 
developed and studied the transport properties of Casson fluid over the 
last few decades. Pushapalata et al. (2016) investigated the unsteady free 
convective flow of a casson fluid bounded by a moving vertical plate in a 
rotating system. Sarojamma et al. (2014) analyzed the flow, heat and mass 
transfer characteristics of a MHD casson fluid in a parallel plate channel 
with stretching walls subject to a uniform transverse magnetic field. 
Kushpalalata et al. (2017) analyzed the effects of cross diffusion on casson 
fluid over an unsteady stretching surface with boundary effects.  
Maleque (2016) investigated an exothermic/endothermic binary chemical 
reaction on unsteady MHD non-Newtonian casson fluid flow with heat and 
mass transfer past a flat porous plate. Maleque (2013) investigated the 
effects of exothermic/endothermic chemical reaction with Arrhenius 
activation energy on MHD free convection mass transfer flow in presence 
of thermal radiation. Prakash et al. (2016) examined the thermal and 
solutal boundary layer in incompressible, laminar flow over an 
exponentially stretching sheet with variable temperature and 
concentration in the presence of chemical reaction and thermal radiation. 
Charankumar et al. (2016) examined chemical reaction and Soret effects 
on casson MHD fluid flow over a vertical plate with heat source/sink. The 
problem was solved numerically using perturbation technique for the 
velocity, the temperature and the concentration species. 
Kumar and Gangadhar (2015) investigated the interactions of MHD 
stagnation point of electrically conducting non-Newtonian casson fluid and 
heat transfer towards a stretching sheet in the presence of viscous 
dissipation, momentum and thermal slip flow. Saidulu and Lakshmi (2016) 
described the boundary layer flow of non-Newtonian Casson fluid 
accompanied by heat and mass transfer towards a porous exponentially 
stretching sheet with velocity slip and thermal slip conditions in presence 
of thermal radiation, suction/blowing, viscous dissipation, heat 
source/sink and chemical reaction effects. Vedavathi et al. (2016) 
examined chemical reaction, radiation and dufour  effects on Casson MHD 
fluid flow over a vertical plate with heat source/sink and the problem was 
solved numerically using perturbation technique. Gireesha et al. (2016) 
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examined the similarity solution to the problem of two - dimensional 
boundary layer flow, heat and mass transfer of non-Newtonian Casson 
fluid over a porous stretching surface. Kirubhashankar et al. (2015) 
investigated Casson fluid flow and heat transfer over an unsteady porous 
Stretching surface. Hussanan et al. (2016) investigated the effects of 
Newtonian heating and inclined magnetic field on two-dimensional flow of 
a Casson fluid over a stretching sheet. This paper presents a steady three 
dimensional casson fluid flow model with Arrhenious function over an 
exponential stretching sheet.  
 
Model Formulation 
We consider three dimensional (3D) steady incompressible flows past a 
non-isothermal exponentially stretching sheet. The sheet is stretched 

along the xy plane, while the fluid is placed along the z - axis; the uniform 
magnetic field is applied in z  - direction that is perpendicular to the flow 
direction. Here, we assumed that the sheet was stretched with velocities 
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= 0 . A heat source/sink placed within the flow to allow for heat 
generation or absorption effects. 
The rheological equation of state for an isotropic flow of casson fluid as 
stated by (Pushpalata et al. 2017) can be expressed as: 
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In the above equation ijijee=
and ije

denotes the ( )thji, components of the 

deformation rate,  is the product of the deformation rate itself, c is the 

critical value of this product based on the non-Newtonian fluid model, B  
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The boundary layer equations of three-dimensional incompressible casson 
fluids flow are given as follows 
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Subject to the initial and boundary conditions: 
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Where ,u , v and w are the velocity component in the direction of x , y and z

respectively,   is the casson fluid parameter,  is the kinematic viscosity, 

B is the magnetic induction, 0B
 is constant, K  and  are permeability and 

the inertia coefficient of porous medium, T is temperature, C is the 

concentration of the fluid, T and C are the coefficient of volume expansion 

for temperature and concentration differences respectively, 0C and 0T  

are constants, 1Q is heat source, 0Q
 is constant, Tk  is the thermal diffusivity 

ratio, h
is the thermal diffusivity, is the density of the fluid, gg

is 

acceleration due to gravity, is the electrical conductivity, hk
is the 

thermal conductivity, pc
is the specific heat capacity at constant pressure, 

Sc
is the concentration susceptibility, T  is the free stream temperature, mT
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is the mean fluid temperature, mD
is the coefficient of mass diffusivity, rk is 

the chemical reaction rate, 0r
k

is constant, ( )1=EE is the 

exothermic/endothermic parameter, ( ) ( ) ( )−
−

 −−
TTk

E

n
a

eCCTT .  is the 

Arrhenius function where n is the dimensionless exponent fitted rate 

constant typically lie in the range 11 − n , aE
is  the activation energy, k is 

the Boltzmann constant 0k
 is constant and the radiative heat flux rq is 

described by Roseland approximation such that 
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and 1k are the Stefan Boltzmann constant and mean absorption coefficient 
respectively.  
 
Method of Solution 
Using the similarity variables: 
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The transformed equations together with the boundary conditions are: 
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Now, we begin with the initial approximate solution (Mohammed et al., 
2015; Olayiwola, 2016): 
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Substituting the initial approximations (14) and embedding artificial 
parameter into (9) – (13) we have: 
Order zero equations are: 
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Order one equations are: 
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Solving the resulting equations ( (15) – (22) ) as in ( Mohammed et al. 
2020), we obtain 
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Results and discussion 
The graphical illustrations for the steady state with Arrhenius chemical 
reaction are presented in in figures 4.1 to 4.22. The computations were 
done for different physical parameters which includes, casson parameter

 , radiation parameter R , prandtl number rP ,  schmidt number cS
, soret 
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number rS , dufour number uD
, permeability parameter Λ, thermal grashof 

number r
G

, solutal grashof number r
G

, ratio parameter , porosity 

parameter pK
, chemical reaction parameter  , activation energy 

parameter  , heat source hQ
and magnetic parameter M . 

 

Figure 4.1: Effect of  on Velocity Profile )(f    

 

Figure 4.2: Effect of  on Velocity Profile )(g   
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Figure 4.3: Effect of R on Temperature Profile )(   

 

 

Figure 4.4: Effect of rP on Temperature Profile )(  
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Figure 4.5: Effect of M on Velocity Profile )(f   

 

 

Figure 4.6: Effect of M on Velocity Profile )(g    
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Figure 4.7: Effect of M on Temperature Profile )(   

 

 

Figure 4.8: Effect of pK
on Velocity Profile )(f   
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Figure 4.9: Effect of pK
on Velocity Profile )(g    

 

 

Figure 4.10: Effect of rS on Concentration Profile )(  
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Figure 4.11: Effect of  on Velocity Profile )(g   

 

 

 

Figure 4.12: Effect of on Velocity Profile )(f    
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Figure 4.13: Effect of on Velocity Profile )(g    

 

 

 

Figure 4.14: Effect of r
G

on Velocity Profile )(f    
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Figure 4.15: Effect of r
G

on Velocity Profile )(f    

 

 

Figure 4.16: Effect of hQ
on Temperature Profile )(   
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Figure 4.17: Effect of  on Temperature Profile )(  

 

 

Figure 4.18: Effect of  on Concentration Profile )(   
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Figure 4.19: Effect of  on Temperature Profile )(  

 

 

Figure 4.20: Effect of  on Concentration profile )(   
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Figure 4.21: Effect of cS
on Concentration Profile )(  

 

Figure 4.22: Effect of uD
on Temperature Profile )(  

 

Figures 4.1 and 4.2 depict the velocity profiles against the similarity variable   

for different values of casson parameter  . It was observed from these figures 
that as casson parameter increases, the fluid velocity distribution decreases 
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inside the boundary layer. Figures 4.3 and 4.4 show the effects of radiation 

parameter R and prandtl number rP on the temperature profile. It was observed 
that increase in radiation parameter increases the temperature profile while 
increase in prandtl number decreases the temperature profile. In figures 4.5 to 
4.7, it was observed that increase in magnetic parameter decreases the velocity 
profiles and enhance the temperature profile as shown in figure 4.7. From figures 
4.8, 4.9, 4.11, 4.12 and 4.13 to 4.15, we observed that increase in porosity 
parameter and permeability parameter lead to decrease in velocity profiles, ratio 
parameter enhances the velocity profile similarly increase in thermal and solutal 
grashof numbers enhances the velocity profile due to thermal and solutal 
buoyancy effects while soret number enhances the concentration profile as 
depicted in figure 4.10. From figures 4.16  to 4.22 shows that increase in heat 
source parameter, chemical reaction parameter, activation energy parameter 
and dufour number enhances the temperature profile while chemical reaction 
parameter, activation energy parameter and schmidtl number decrease the 
concentration profile. 
 
Conclusion 
From the graphical illustrations above we conclude as follows: 

➢ Ratio parameter, thermal and solutal grashof numbers enhance the 
velocity profiles while velocity profile decreases with increase in casson, 
magnetic, permeability and porosity parameters 

➢ Chemical reaction parameter, activation energy parameter and schmidtl 
number decrease the concentration profile while Soret number enhance 
the concentration profile 

➢ Prandtl number decreases the temperature profile while magnetic 
parameter, radiative parameter, heat source, dufour number, chemical 
reaction and activation energy parameters enhance the temperature 
profile. 
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