ENTREPRENEURIAL INNOVATION IN FOOTWEAR PRODUCTION AMONG UNDERGRADUATES IN FEDERAL UNIVERSITY OF AGRICULTURE, ABEOKUTA, NIGERIA

*AKINYELE, SAMUEL TAIWO **AKINYELE, ESTHER FEYISAYO & *ASHIRU, FATAI ADEROJO

*Dept. of Entrepreneurial Studies, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria **Dept. of Business Administration, School of Postgraduate Studies, Crawford University Igbesa, Ogun State, Nigeria

ABSTRACT

Assessment of innovation is key that will enhance sustainability of quality control in any organization, however the objective of every organization is to satisfy the needs of customers and as well as the stakeholders, when organization is facing with challenges of competitive advantage with others firms. The factor that can be used to survive is innovation, in other hand entrepreneurship has been identify as main solution to unemployment. This study assessed the entrepreneurial innovation in footwear production in Abeokuta, Ogun State. A purposive random sampling technique was used to select a total number of 93 respondents among all the footwear producers in Abeokuta. The primary data were collected on personal demography, new products design and knowledge acquisition, new process method and total production and new market strategy and consumer demand and quality with the use of questioner. Data were analysed using descriptive statistics such as Pearson product moment correlation (PPMC), two-way analysis of variance (ANOVA) and regression. Results showed of the hypothesis revealed that. New product design ($\bar{x}=5.6195$), knowledge acquisition ($\bar{x}=5.1805$), total production ($\bar{x}=5.0780$), new market strategy ($\bar{x}=5.1805$), consumer demand and quality ($\bar{x}=5.4000$), new process method ($\bar{x}=5.3585$), ANOVA showed the significant ($p<0.05$) relationship between product design and knowledge acquisition ($F=16.848$) at 0.000 significant level. Correlation showed the significant ($p<0.01$) relationship new product design and knowledge acquisition with positive correlation coefficient of (0.417) Correlation also show the significant ($p<0.01$) relationship between new
process method and total production correlation coefficient of 0.336. In conclusion, the study shows the relevance of entrepreneurial innovation in footwear. The study also recommends that entrepreneurs should be aware of impact of innovation in order to achieve breakeven.

Keywords: Entrepreneurship, Innovation, Unemployment, Competitive advantage, Customers

Introduction
The history of the used of footwear by human kind was traced back to the ice age about five (5) million years ago. Due to unkind weather conditions the need for footwear started growing. Other evidences show that footwear came to use at the end of the Paleolithic Period, at about the same time the early humans learned the art of leather tanning. Earlier footwear was made of wrappings of dried grasses and only later on the art making footwear from pieces of leather was developed. Until the mid-nineteenth century shoes were made as straights i.e., there was no distinction made between the right and left shoes (Veres, 2005). The left and right footwear were identical and hence could be worn on either foot. Only prolonged usage shaped them into right and left boots. The right and left shoes were invented by a fashionable boot maker, William Young from Philadelphia in 1800. The first crafted footwear was the Sandals, which were known to be the successors to these wrappings. In India these Sandals were called as Padukas, which were mainly worn by the Saints. From the dawn of modern humans, shoes represented very important part of our history. They enabled us to survive in non-optimal environments, do jobs with greater proficiency, protected our health, gave us comfort and were incredible tools for showcasing our fashion sense. And all of that happened even before Ancient Greece was formed. Therefore, there was need to assesses the entrepreneurial innovation in footwear production, to do justify to this research work there was a need to examine the relationship between production of footwear and entrepreneurial innovation. America was the world leader in innovation, but many of the innovative ideas that were hatched in American start-ups, labs, and companies end up going abroad to reach commercial scale. Apple, the superstar of innovation, locates its production in China (yet still reaps most of its profits in the United States). In a turbulent economic environment, innovation was a strategic driver in seizing new opportunities and protecting knowledge assets (Teece, 2000). The importance of innovation has motivated researchers to identify the various driving forces of innovation (Becheikh, Landry and Amara,
2006). Some researchers contend that quality management (QM) could be one of the prerequisites of innovation (Hoang, Igel and Laosirihongthong, 2006.) QM practices contribute to operational and financial performance, allowing a firm to achieve a competitive advantage (Lagrosen and Lagrosen, 2005; Kaynak, 2003). It is not surprising that many entrepreneurs around the world (e.g., Adidas, Ford, Nike, and Gucci) have adopted Innovation over the last two decades (Rahman, 2004; Powell, 1995)

In Africa, the origin of footwear was vague. However, ancient Egypt was generally credited with its use (especially sandals) in 3700BC (Okpara 2011). Egyptian wall paintings also lend credence to this, showing thong sandals with flat soles made of papyrus or leather. A late 16th Century innovation introduced high heels for both sexes. This fashion was particularly popularized by Louis XIV of France, who wore them to boost his modest height. During the Napoleonic Wars, officers and other gentlemen wore jackboots, including Wellington while male civilians wore narrow, flat, buckled pumps. By the mid-19th Century, as a result of entrepreneurial innovation shoes began to be mass produced in several factories, and thus became more widely available to the general public. Men wore laced or elastic-sided ankle boots. Women wore heeled shoes, low cut, laced or buttoned to the ankle. Canvas – topped, rubber-soled shoes (sneakers) were introduced for sports. Since the 20th Century till date, emphasis was on youth and informality influenced shoe design. Protection, aesthetics and status symbol were key functions of footwear today.

In Nigeria, however, documented accounts debunked the popular notion that trade in goods and craft was a foreign culture, which started with the advent of the Europeans. These accounts buttressed the vibrancy of production and trade by different local communities, in craftsmanship (such as bronze, brass and leatherwork), besides agriculture. This trade continued internally and externally (in the latter case, with the monopoly of guilds, social classes) up till 1860 a year before Lagos became a British colony. The economy paralysis the indigenous footwear and other sectors, due to lack of entrepreneurial innovation apparently informed the extant import prohibitions in February 2004, vide Item 33 of the Revised Federal Ministry of Finance Circular (2005). Yet, available cumulative figures from Central Bank of Nigeria (CBN) since the 1980s released in 2004, as well as the Manufacturers Association of Nigeria (MAN) on capacity utilization, remain worrisome. And between 2002 and 2009, 1.9 million jobs were lost, and 834 domestic manufacturing firms closed, owing to imports, smuggling and generally poor infrastructure owing to imports, smuggling and generally poor infrastructure (Nwankwo and Ibeh, 2018). However, the industry is currently
facing new order as characterized by hyper-competition, fast-changing technology, innovation and dynamic business environment. There were several studies focusing on different issues of innovation, however few of them study the footwear industry. With innovation being a key element for success, and while the Nigeria footwear industry enjoys a period of growth and international recognition it seems relevant to better understand the engagement of this industry with innovation.

Statements of Research Problem

Leather industries are one of major sector in Nigeria manufacturing sectors, it contributes a reasonable quota into Nigeria economy. This industry was a center of attraction to both local and international consumers. However, the major challenge of this industry was standardization and growth in order to gain more attention from both local and international market. The course of these challenges has been trace to include product design, process method, market strategy, as well as environmentally and socially sustainable production of footwear and leather products. Taking steps towards Innovation would create brand value among the consumers and other stakeholders; it takes into account the environmental and social impact of their knowledge Acquisition, selection of raw materials, total footwear produces and customers demand, "use of technologically innovative production methods, and applying this thinking all the way to retailing and disposal of the end products". (SGS, 2014). Footwear manufacturing has certainly seen more changes in the last two decades than in last two centuries. There was always need to stunned to see how fast new technologies Innovation were developed and adopted, not only by big brands but also by a very large players range, some of them coming from totally different fields. The Innovation on footwear production is a good technique to understand how digital creation and automation could eventually lead to a whole new set of customer-oriented industrial process. That was why it was important to keep up with knowledge, production and to connect with people to get into the future of this industry. This innovation could have a profound effect not only on a company’s design and manufacturing processes, but also on the supportive role that technology will be call upon to play in those processes. As they begin to engage in additive entrepreneurial will implement advanced design technologies, along with numerous computing tools to run simulations and to test and track the quality and durability of footwear, says Cotteleer.
Objectives of the Study
The broad objective of this study was to investigate how innovation theory can be used to improve footwear production and functionality. Other specific objectives of the study include:

1. To know what extent new product designs has impact on knowledge acquisition of footwear producer.
2. To establish the relationship between new process method and total production of footwear produce in Abeokuta.
3. To know if new market strategy has any effect on customers demand and quality of footwear.

LITERATURE REVIEW
Product Design
Product design is a source of competitive advantage for companies and is an important driver of company performance (Christian, Martin and Christina, 2015). Creativity in the design process is often characterised by the occurrence of a significant event the so called ‘creative leap’ (Milton, 2001). Sometimes such an event occurs as a sudden insight which the designer immediately recognises as significant, but often it is only in retrospect that the designer (or an observer of the design process) was able to identify a point during the design process at which the key concept began to emerge. While these problem reformulation strategies were not closely related to any existing idea generation strategies, all are components of design process models (Shanna, Seda, James, Colleen and Richard 2012). The set of strategic and tactical activities, from idea generation to commercialization, used to create a product design. In a systematic approach, product designers conceptualize and evaluate ideas, turning them into tangible inventions and products. The product designer’s role is to combine art, science, and technology to create new products that people can use. Their evolving role has been facilitated by digital tools that now allow designers to communicate, visualize, analyze and actually produce tangible ideas in a way that would have taken greater manpower in the past. Product design was sometimes confused with (and certainly overlaps with) industrial design, and has recently become a broad term inclusive of service, software, and product design. Industrial design was concerned with bringing artistic form and usability, usually associated with craft design and ergonomics, together in order to mass-produce goods (Andreas 2017). Other aspects of product design and industrial design include engineering design, particularly when matters of functionality or utility (e.g. problem-solving) were at issue, though such boundaries were not always clear.
Process Method
The invention relates to devices and methods for designing and manufacturing customized footwear, and components thereof. An example method includes a method of designing at least a portion of a sole of an article of footwear customized for a user. The method includes the steps of determining at least one input parameter related to a user, analyzing the at least one input parameter to determine at least one performance metric of a foot of the user, and determining at least one customized structural characteristic of at least a portion of a sole of an article of footwear for the user based on the performance metric. (Chris, Jean, Murphy, Pedro and Trampas 2015). The continuous improvement process is the central point of quality philosophy. A continuous control and a monitoring of processes will initiate preventive actions which finally will result in further product improvements or process modifications. Work flow is the set of tasks—grouped chronologically into processes and the set of people or resources needed for those tasks that were necessary to accomplish a given goal. An organization’s workflow is comprised of the set of processes it needs to accomplish, the set of people or other resources available to perform those processes, and the interactions among them. (Cain and Haque, 2008). The processes appear quite logical (and even efficient) in acting to accomplish the end goal. It is in the interaction among the processes that complexities arise.

Knowledge Acquisition
Knowledge acquisition is the process used to define the rules and ontologies required for a knowledge-based system. The phrase was first used in conjunction with expert systems to describe the initial tasks associated with developing an expert system, namely finding and interviewing domain experts and capturing their knowledge via rules, objects, and frame-based ontologies. Expert systems were one of the first successful applications of artificial intelligence technology to real world business problems (Simon and Schuster, 2014). Researchers at Stanford and other AI laboratories worked with doctors and other highly skilled experts to develop systems that could automate complex tasks such as medical diagnosis. Until this point computers had mostly been used to automate highly data intensive tasks but not for complex reasoning. Technologies such as inference engines allowed developers for the first time to tackle more complex problems (Kendal, and Creen, 2007). As expert systems scaled up from demonstration prototypes to industrial strength applications it is soon realized that the acquisition of domain expert knowledge is one of if not the most critical task in the knowledge engineering process. This knowledge acquisition process
became an intense area of research on its own. One of the earlier works on the topic used Batesonian theories of learning to guide the process. One approach to knowledge acquisition investigated is to use natural language parsing and generation to facilitate knowledge acquisition. Natural language parsing could be performed on manuals and other expert documents and an initial first pass at the rules and objects could be developed automatically. Text generation is also extremely useful in generating explanations for system behavior. This greatly facilitated the development and maintenance of expert systems (Potter, 2014). A more recent approach to knowledge acquisition was a re-use based approach. Knowledge can be developed in ontologies that conform to standards such as the Web Ontology Language (OWL), (Schreiber, 2017). In this way knowledge can be standardized and shared across a broad community of knowledge workers. One example domain where this approach has been successful was bioinformatics (Goble, 2018).

Entrepreneurship

The word "entrepreneur" was derived from a French root ‘entreprendre’, meaning, "to undertake". The term "entrepreneur" seems to have been introduced into economic theory by Cantillon (1755) but Say (1803) first accorded the entrepreneur prominence Kruger (2004). It was Schumpeter however, who really launched the field of entrepreneurship by associating it clearly with innovation. Drucker’s definition of entrepreneurship, namely a systematic, professional discipline, brought a new level of understanding to the domain (Maurer, Shulman, Ruwe and Becherer 1995), Mahendra (2019). An aligned definition with that of Cantilion and Say was that of Caree and Thurik (2002). They were of the view that an entrepreneur was an enterprising individual who builds capital through risk and initiative. Akinwumi (2012) defined entrepreneurship as the act of identifying, initiating, and organizing and bringing a vision to life, be it a new product, service, process, organizational strategy, promotional strategy or a niche market. From the various definitions explored, it can be deduced that an entrepreneur or entrepreneurship was associated with an individual who initiates a business venture to maximize profit. It could also be attributed to mean the establishment of a particular business venture not only to maximize profit but also to fulfill a human need. Different scholars have attributed different meaning to the concept. Entrepreneurship is a discipline with a knowledge base theory. It is an outcome of complex socio-economic, psychological, technological, legal and other factors. It is a dynamic and risky process. It involves a combination of capital, technology and human
Entrepreneurship was equally applicable to big and small businesses, to economic and non-economic activities. "An entrepreneur is someone who conceives an idea, creates a path to success, does whatever it takes to succeed and tries to dominate their market!" (Matthew 2018) Different entrepreneurs might have some common traits but all of them will have some different and unique features. If we just concentrate on the entrepreneurs then there will be as many models as there are ventures and we will not be able to predict or plan, how and where and when these entrepreneurs will start their ventures.

Entrepreneurship is a process. It is not a combination of some stray incidents. It is the purposeful and organized search for change, conducted after systematic analysis of opportunities in the environment. The entrepreneurship phenomenon has been explained in various terms such as intrapreneuring; corporate entrepreneurship; corporate venturing; internal corporate entrepreneurship; strategic renewal; internal entrepreneurship and venturing (Antoncic and Hisrich, 2003; Sharma and Chrisman; 1999). According to George (2017) "People who work for themselves have always been considered idols to follow. Nigerian entrepreneurs help to improve the economy of the country, this is why it is necessary to encourage and help cultivate the business spirit in individuals" he goes further to explain the type of entrepreneurship that are common in Nigeria as thus;

Types of Entrepreneurial

Social Entrepreneur: It is a new type of entrepreneurship where people get involved in social projects to help their communities. Social entrepreneurs are natural leaders who can establish and launch social projects to solve problems of Nigeria. It may be hard to define this as a business because the main goal of a social entrepreneur is not to make profit.

Technopreneur: This term is a combination of technology and entrepreneurship. Technopreneurs make their profits by coming up technological innovations that can serve important purposes for the society.

Serial Entrepreneur: Serial entrepreneurs focus on creating new business; they seek profit from the constant creation and establishment of different new projects. They are more prone to business failures, but however become professionals in establishing businesses and finding profits from plenty different aspects of the economy.

Lifestyle Entrepreneur: For this people, passion is more valuable than profit. This type of entrepreneurship was born out of loyalty and love for the project or
profession. Lifestyle entrepreneurs are less prone to adapt and change the nature of their projects. They are more conservative to what they do in life.

Acquirers: These people do not create businesses; they focus on taking over existing businesses and making them profitable. They are professional managers who can turn any project into profit. A lot of companies hire these managers to develop their market chains.

Pattern Multipliers: These people do not create anything new their man job is to promote anything you want. This type of entrepreneurship was more involved in buying patents to businesses. These entrepreneurs can develop, promote and sell any idea for the best price.

Speculators: It is a very simple but effective type of entrepreneurship. These entrepreneurs know the best places buy products at the cheapest prices, and then resell them. The retail or reselling businesses are the most profitable in the world it is even bigger in scale than the IT business.

Self-Employers: This type of entrepreneurs is also called Freelancers. They prefer to work for themselves and take responsibility for their work! They work with clients directly with no bosses above them.

Necessity Entrepreneurs: This is the most common type of entrepreneurship in Nigeria. In this case, people establish random businesses just to survive and beat unemployment in the country.

For the purpose of this study the researcher was focused on technology entrepreneurship since objective of our study was to assess the entrepreneurial Innovation on footwear production and innovation is inter related with technology therefore, the emphases was laid on the contribution of different scholars on the concept of technology innovation.

Early conceptual meaning of technology entrepreneurship could be traced to Garud and Karnoe (2003). They defined technology entrepreneurship as a co-production phenomenon that draws from a team of specialized individuals from multiple fields, some or all of whom become embedded in the technology path they try to shape in real time. Shane and Venkataraman (2004) defined technological entrepreneurship as the process by which entrepreneurs gather organizational resources and technical systems. However, Dorf and Byers (2005) were of the view that technological entrepreneurship was a way of business leadership that involves identifying high-potential, technology-intensive commercial opportunities, gathering resources such as talent and capital and managing rapid growth and significant risk using principled decision making skills. Allahyary and Meigounpoory (2013) focused their definition technology entrepreneurship on the fact that it was an innovative application of technical
science and knowledge either by an individual or by a group of persons, who create and manage a business and was ready to undertake financial risk in order to achieve certain goals and perspectives. In an attempt to conceptualize their own definition, Petti and Zhang (2011) categorized technological entrepreneurship into three capabilities which were: entrepreneurial, managerial and environmental capabilities. They believed that a combination of these three capabilities would bring about value creation which could be in terms of monetary benefits. But Bailetti (2012) was more organizationally conscious from his own definition of technological entrepreneurship. He asserted that technological entrepreneurship was to invest in a project that gathers and mobilizes members with heterogeneous assets, which were related to advancement in scientific and technological knowledge, in order to create and acquire value for an enterprise.

Technological Entrepreneurship
Aderemi, Ilori, Siyanbola, Adegbite, and Abereijo (2008) identified two major features technological entrepreneurship. These were High potential opportunity and Technology-intensive opportunity. He went further to explain vividly the meaning of these features.

High potential opportunity: This was seen as a high potential opportunity if it was capable of creating new value for its customers. It must have a significant level of technology understanding which was difficult to replicate and can often be protected, that was patented. This will surely have a significant first mover advantage. It creates a barrier to entry and it also has a high level of initial risk which could be translated into high levels of return.

Technology-Intensive Opportunity: Technology entrepreneurship involves a process of problem solving, raising and safeguarding the quality of life, needing technical skills and applications, identifying potential market, improvement in quality of products in order to improve competitiveness of the firm with expectation of saving in process cost. Additionally, sufficient reason for embarking on technological entrepreneurship was expected to commercialize significant innovations that were expected to guarantee suppliers of materials, long-term stability of firms and increase output.

Role of Technological Entrepreneurship in Social and Economic Development
Zahra and Hayton (2007) and Aderemi et al (2008) opined that since technological entrepreneurship centers on the creation of new firms by independent entrepreneurs and corporations to exploit technological
discoveries, it was important to highlight five areas in which these concept contributes immeasurably to economic and social and development. Technological entrepreneurship was needed to propel technological innovation efforts into the market. Whenever there was a breakthrough in research and development, it was imperative for technological entrepreneurship to commercialize the achievements of technological efforts otherwise; it remains in the laboratory without making any impact. It has the potential of improving state of technological capability in a country. This was due to the fact that as technological efforts were being made, learning takes place. This occurs either by doing or observation, thus improving technological capability in the efforts in question. Owning to the fact that technological entrepreneurship would necessarily involve the commercialization of a research output, more patents were generated and patents were a well-known indicator and measure of technological development and industrialization in countries all over the world. For a technological entrepreneur to be relevant, he must of necessity meet market needs and be a problem solver. In a bid to meet market need, research and development as well as science and technology efforts must be well coordinated.

Innovation

“Innovation is the multi-stage process whereby organizations transform ideas into new improved products, service or processes, in order to advance, compete and differentiate themselves successfully in their market place.” (Bweregehe, Rowley and Sambrook, 2009) Innovation has been at the heart of economic and social development. The rise of modern industrial powers in North America and Europe, as well as the economic success of many recent developing countries are all based on rapid increases in the speed of technological, process, and managerial innovations. As such, it is imperative for developing countries to focus on and understand effective innovation policies as a mean to promote public welfare and growth. Burgelman, Mandique, and Wheelwright (2001) define innovation as a process which is characterized as an act of introducing new things. This method involves the implementation, adoption, generation and incorporation of new ideas and practices in so as to create wealth. Given this definition, knowledge management plays an important role since it was the means to increase organizational capacity focusing on achieving efficiency through the creation, dissemination, and adoption of science and technological knowledge. Another concept of innovation that has received attention is refers to as open innovation, which has been disseminated in the literature of the area,
because with the current pace of technological change it has been very difficult for companies to ensure their competitiveness through unique and exclusive internal development of new technologies. This concept of Open Innovation refers to a combination of internal and external ideas within systems and architectures related to the business (Idrissia, Amaraa and Landrya, 2012). Thus, the business model uses internal and external ideas to create value making the R and D an open system (Chesbrough, 2003). For instance, footwear providing minimal interference with the natural movement of the foot due to its high flexibility, low heel to toe drop, weight and stack height, and the absence of motion control and stability devices.

Types of Innovation: The OECD (2005) identifies four types of innovation as product innovation, process innovation, marketing and organisational innovation.

Product innovation: Schumpeter defines product innovation as the introduction of new goods; one in which the consumers are not yet familiar with. It is a new quality of a good. Product innovation also greatly influences businesses today. Product innovation is the introduction of new functions, enhanced performance or the addition of new features into the existing products (Susman, Warren and Min 2006).

It involves introducing the new or significantly improved products or services (Polder, Leeuwen, Mohnen and Raymond, 2010). For product innovation, the product must either be a new product or significantly improved with respect to its features, intended use, components and material. Change in design that brings significant change in the intended use or characteristics of the product was also considered as product innovation (OECD, 2005). It was also argued that the reason why firms aim product innovation is to bring efficiency in the business (Polder, Leeuwen, Mohnen and Raymond 2010). SME’s face unrelenting pressure from powerful customers to lower prices and accept shrinking margins on sales. SMEs are thereby seeking revenue growth from new products and services. Susman therefore recommends that companies must offer customers new products and services to allow for a more efficient and effective use of products that they currently sell. Nooteboom (1994) ascertains the fact that although only a small proportion of SMEs engage in innovative activities, those that do so appear to have a higher yield for their effort especially in number of new patents that were issued. Nooteboom further recommends that SMEs should pursue product innovation strategies in emerging markets. (Woodcook, Edwards, Tonne, Armstrongrong, Ashiru and Banister 2009) argues that SMEs often carry out New Product Development process less completely or thoroughly compared.
to the larger companies. Trott (1998) confirms that corporations must be able to adapt and evolve if they wish to survive. This is because competitors will come to the market and introduce new products that will change the basis of competition. The ability to change and adapt therefore is very key to the survival of any business.

Process innovation means improving the production and logistic methods significantly or bringing significant improvements in the supporting activities such as purchasing, accounting, maintenance and computing (Polder, Leeuwen, Mohnen and Raymond, 2010). OECD (2009) defined process innovation as implementation of the production or delivery method that was new or significantly improved. This includes significant changes in techniques, equipment and software. Process innovations can be intended to decrease production unit costs, to increase quality, or to produce or deliver new or significantly improved products. Process innovation was the introduction of a new method of production; one that was yet to be tested by experience in the branch of manufacture concerned. It was a process which can also exist in a new way of handling a commodity commercially (Schumpeter, 1934, (2008)). Process innovation was an aspect crucial to the success of any business. It was an integrated concept that involves changes in the production process which was aimed at reducing the costs, wastes and lead time or at improving production efficiency.

Marketing innovation is defined as the identification of new markets and finding out how they were better served or how they may become more receptive to the available products (Shergill and Nargundkar, 2005). The objective of marketing innovation being to increase the sales and market share and opening new markets, it includes activities such as implementing new marketing method that involve significant changes in the packaging, design, placement and product promotion and pricing strategy (Chou, 2009). The distinctive feature for the marketing innovation from the other types of innovation was the implementation of new marketing method that the firm has never implemented before.

Organisational innovation is defined as introduction of new practices of doing business, workplace organizing methods, decision making system and new ways of managing external relations (Diskurs, 2011). OECD (2009) defined the organisational innovation as implementing new ways of organizing business practices, external relations and work place.

Entrepreneurial Innovation: The relationship of innovation and entrepreneurship can be understood in all the studies in the area of entrepreneurship and much of entrepreneurial endeavour is inseparable from
innovation. Schumpeter states innovation broadly as the introduction of a new product or a new product quality; the introduction of a new production; the opening-up of a new market; the use of new raw materials or sources of semi-manufactures and the creation of a new industry business such as the establishment of a monopoly situation for the breakdown of a monopoly. One of the leading authorities in the area, Peter Drucker describes innovation as the means by which organizations create value-producing resources or endows existing resources with enhanced potential for creating value. It was the effort to create purposeful, focused change in an enterprise’s economic or social potential. According to authors such as Pinchot and Pellman (1999) and Robbins (1997), Innovation involves finding a new and better way of doing something. Much of our modern society was based on innovations that have occurred in the past that provide us with the standard of living we enjoy today. And Innovation has always been at the centrepiece of competitiveness. The new technologies competition, time and speed were used to explain the dynamics of competition. Thus there is a large focus on the concept of innovation and entrepreneurship. Innovation takes several forms: in products, services, production processes and management systems. Innovation in products and services was related to “Research and Development” and meeting consumers’ needs. Product innovation refers to the ability of a company to create new products or to modify existing ones to meet the demands of current or future markets (Zahara and Covin, 1995, Kuratk, 2014) Entrepreneurial innovation deals with innovation in management thinking and its primary purposes are to create new value and wealth for all stakeholders and thereby increase economic prospects. In this study product, process and marketing innovation were considered to make up the dependent variable innovation.

Footwear Production
A Footwear Manufacturing Operative is usually involved in each stage of the production process. This includes cutting the leather and stitching the pattern pieces together. They are also involved in creating a ‘last’, which was the mould the shoe will be formed around. They use the ‘last’ when stitching the pattern pieces together in the correct shape, before fitting soles and heels to the finished product. The shoe was then stained, polished and buffed and the ‘lasts’ removed. Back in the day, shoemakers were solely responsible for each stage of the shoemaking process. Today, quality shoes are made using a nesting manufacturing process. This involves dividing tasks among several departments within the factory. A quality men’s shoe undergoes numerous stages of
production before it was completed. The precise number of steps involved varies drastically, depending on the selected production method and the shoe manufacturer. It can take from 68 to 390 different steps. In the past shoemakers were responsible for the entire process, top to bottom. Today, specialized departments within the shoe factory handle the various stages of production. This method of division of labor was known as nesting. As soon as each division was done with its respective tasks, the men's shoe was sent on to the next step in the production process. (Shoepassion, 2018.) Generally speaking, the types of tasks each of which was the responsibility of a single specialized department were as follows:

1. Designing: Here sketches were drawn, shoes were designed, shoe lasts were prepared, and a punching tool was used.
2. Stamping: This was the pieces of leather needed to make the shoes were cut and/or stamped.
3. Sewing: The pieces composing the shaft were sewn together), die assembling (the shoes were assembled.
4. Shoe room: Finishing touches were added and final quality controls were conducted.

Sanders shoes and boots were made entirely in England using traditional shoe making techniques. The footwear was made in the same factory as when the Sanders brothers William and Thomas first began producing fine footwear in 1873. (Bradshaw and Lloyd, 2005)

According to one of Entrepreneur in line of footwear production in Nigeria Idirs Oloyede, he said "footwear production was one of those ventures that address a basic need. It was very lucrative and can be a source of wealth creation". Everybody wears shoes; they were basic fashion accessories necessary to complete an outfit. For this purpose, there was large market and big opportunity for you to make money in shoe manufacturing business. Shoes come in various shapes and sizes, and were worn for different purposes. Producing footwear requires hard work, skill, effort and creativity. In the end, footwear production is a very rewarding venture. (Samuel Chinedu, 2017). He explains further on how individual can commerce footwear production and start making money through it as thus: **Getting Started:** There are two ways you can start a footwear production company. One way was to start solo, making the shoes by yourself like Idris did. You would need to be trained by someone who was skilled in shoe making. A common practice in Nigeria was to stay under someone for some time as an apprentice. You would gain skills, experience and a take-off pad to launch your business. This way requires less capital and more time. Most young
entrepreneurs start like this. Another way is to open a factory and employ skilled staff to handle production while you handle management. You will need the services of creative shoe designers, production staff, marketing staff, etc. This is usually large-scale and requires more capital because you will need a factory, machinery and whatnot. Most people who start by themselves usually find it easier expanding into a large factory with personnel and everything. Even if you have the capital to launch a big factory, it might be important to get some skills in footwear production and know exactly what the business is about.

RESEARCH METHODOLOGY
The study was conducted with the aim of assessing entrepreneurial Innovation on footwear production in Odeda local government in Abeokuta. The study was a cross-sectional study and employs the survey strategy. The population of this study was comprised of a set of entrepreneurs that were practically involved in footwear production. The population of shoe makers was 121; this information was retrieved from the Odeda Local government office, Ministry of trade and commerce (2017). A purposive random sampling technique was adopted for this study since respondents cut across owner or managers of shoes making workshops. Statistical package for social sciences version 22 (SPSS) was used to analyse the response rate. Hypotheses was also tested using parametric statistics such as: Pearson moment correlation and ordinary least square regression so as to knew the relationship that existed among various variables as well as to knew if one variable affected the other. reliability test was used to measure the internal consistency for all variables.

DATA ANALYSIS
A total of ninety three (93) purposive questionnaires were distributed among the respondents, out of which eighty two (82) were filled and returned. It implies that approximately 88.2% of the administered questionnaires were retrieved. The reason for administering 93 questionnaires was to ensure a high return rate. The tabular presentation of the questionnaire analysis is given below:

<table>
<thead>
<tr>
<th>Questionnaire</th>
<th>Respondents/ percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returned</td>
<td>82 (88.2%)</td>
</tr>
<tr>
<td>Not returned</td>
<td>11 (11.8%)</td>
</tr>
<tr>
<td>Total distributed</td>
<td>93 (100%)</td>
</tr>
</tbody>
</table>
Source: Field Survey, 2019
Classifies the respondents based on different biography and status. It revealed that (100%) all respondents were male and no single female. This implies that footwear production is majorly Male work in the choosing area of study. The respondents was also classifies respondents based on marital status. it revealed that 39(48%) were single, 43(52%) were married while there was no account for other status. This infers that majority of the respondents are married. The results of respondents based on age. It reveals that 23(28%) are within the range of less than 25 years and 59(72%) are within the range of 26-46yrs, there was no record for other categories. This implies that majority of the respondents (i.e shoes makers) are within the range of less than 25years and 26 - 45 years, as supported by USA data analysis in footwear manufacturing industry(2018). The classification of respondents based on Education qualification. It reveals that 51(62%) are SSCE holders, 6(7%) are either HND or B.Sc holders, there was no record for Master’s degree PhD. Holders. While Others category include those people who have not attend school and those have only primary school certificate, and this people account for 25(32%) This implies that majority of the respondents are SSCE holders. It show that 48(59%) respondents fall within the range of 1-5 years, 20(24%) fall within 6-10 years, 8(10%) fall within 11-15 years and 6(7%) are have more than 15 years experience in working. This implies that experience of majority of the respondents fall within the range of 1-5 years. The respondents was classifying based on the post held in workshop show 57(69%) as owner of the workshop, 14(17%) as Journeyman and 11(14%) as apprentice. This implies that the majority of respondents are shop owner.

Table 2: Distribution of Respondents by Demographic Characteristics n=82

<table>
<thead>
<tr>
<th>Variables</th>
<th>Categories</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Male</td>
<td>82</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td>Single</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Married</td>
<td>43</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>82</td>
<td>100</td>
</tr>
<tr>
<td>Business Experience</td>
<td>1- 5 years</td>
<td>48</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>6- 10 years</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>
Table 3a

| Source: Field Survey, 2019 |

Test of Hypothesis
Regression and correlation analysis technique was used to establish and test the relationship between independent variable and dependent variable of hypotheses.

Hypothesis 1: New product design in footwear production cannot have impact on knowledge acquisition of footwear producer

Table 3a

<table>
<thead>
<tr>
<th>Model Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>a. Predictors: (Constant), New product design</td>
</tr>
</tbody>
</table>

Table 3b

18 | Page
The result from the model summary table revealed that the extent to which the variance in: new product design in footwear production will have impact on knowledge acquisition of footwear producer is 17.4% i.e. \(R^2 = 0.174 \). The ANOVA table shows the \(F_{cal} = 16.848 \) at 0.00 significance level. The table shows that product design has a significant relationship with knowledge acquisition.

Table 3c

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>T</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (Constant)</td>
<td>1.733</td>
<td>.841</td>
<td>2.060</td>
<td>.043</td>
</tr>
<tr>
<td>New product design</td>
<td>.614</td>
<td>.149</td>
<td>.417</td>
<td>4.105</td>
</tr>
</tbody>
</table>

The coefficient table above shows that the simple model that expresses product design has an impact on knowledge acquisition of footwear producer. The model is shown mathematically as follows: \(Y = a + bX \) where \(y \) is Knowledge Acquisition and \(x \) is New product design is a constant factor and \(b \) is the value of coefficient. From this table therefore, Knowledge acquisition of footwear producer = 1.733 + 0.614 New product design. Therefore, for every 100% increase in Knowledge Acquisition of footwear producer, new product design contributed 61%.

The above result implies that New product design has a positive significant relationship on Knowledge Acquisition of footwear producer i.e. since our \(P \) value (0.00) is less than 0.05. Thus, the decision would be to reject null hypothesis (Ho).
and accept alternative hypothesis (H₁), i.e. there is a significant relationship between new product design and Knowledge acquisition of footwear producer.

Table 3d

<table>
<thead>
<tr>
<th></th>
<th>New product design</th>
<th>Knowledge Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>1</td>
<td>0.417**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>82</td>
<td>82</td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level (2-tailed).

Table above explains the degree of association (relationship) between new product design and knowledge acquisition. The result implies that there is a positive and low degree of relationship between new product design and knowledge acquisition since Pearson correlation coefficient is 0.417. Also the correlation coefficient test value 0.000 is less than 0.01 (Sig. level). Hence, it also implies that as new product design increases knowledge acquisition also increase.

Hypothesis 2: There is no relationship between new process method and total production of footwear production in Abeokuta.

Table 4a

<table>
<thead>
<tr>
<th>Model Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), New Process Method

Table 4b

<table>
<thead>
<tr>
<th>ANOVAa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

b.
The result from the model summary table revealed that the extent to which the variance in: New process method related with total footwear production is 11.3% i.e. (R square = 0.113). The ANOVA table shows the Fcal 10.172 at 0.02 significance level. The table shows new process method has a significant relationship with total production of footwear production.

Table 4c

<table>
<thead>
<tr>
<th>Coefficientsa</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>T</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>2.985</td>
<td>.659</td>
<td>4.528</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Total Production

The coefficient table above shows that the simple model that expresses how new process method has a positive effect on total production of footwear. The model is shown mathematically as follows: Y = a + bX where y is Total production and x is New process method, ‘a’ is a constant factor and b is the value of coefficient. From this table therefore, Total production of footwear = 2.985 + 0.391 New process method. Therefore, for every 100% increase in customer satisfaction, customer satisfaction contributed 39.1%.

The above result implies that New process method has a positive significant relationship on total production of footwear i.e. since our P value (0.02) is less than 0.05. Thus, the decision would be to reject null hypothesis (Ho) and accept alternative hypothesis (H1). i.e. there is a significant relationship between New process method and total production of footwear.
Table 4d

<table>
<thead>
<tr>
<th>Correlations</th>
<th>New Process Method</th>
<th>Pearson Correlation</th>
<th>Sig. (2-tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Process Method</td>
<td>1</td>
<td>.336**</td>
<td>.002</td>
<td>82</td>
</tr>
<tr>
<td>Total Production</td>
<td>.336**</td>
<td>1</td>
<td>.002</td>
<td>82</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

Table above explains the degree of association (relationship) between new process method and total production. The result implies that there is a positive and low degree of relationship between new process method and total production since Pearson correlation coefficient is 0.336. Also the correlation coefficient test value 0.002 is less than 0.01 (Sig. level). Hence, it also implies that as new process method increases total production also increases.

Hypothesis 3: Adoption of new market strategy cannot affect customer demand and quality of shoes

Table 5a

<table>
<thead>
<tr>
<th>Model Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), New Market Strategy

Table 5b

<table>
<thead>
<tr>
<th>ANOVAa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Residual</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
The result from the model summary table revealed that the extent to which the variance in: customer demand and quality can be explained by New market strategy is 0.12% i.e. (R square = 0.012).

The ANOVA table shows the F-cal 95.4 at 3.32 significance level.

The table shows that Customer demand and quality has significant relationship with new market strategy.

Table 5c

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>T</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>5.838</td>
<td>.451</td>
<td>12.946</td>
<td>.000</td>
</tr>
<tr>
<td>New Market strategy</td>
<td>-.085</td>
<td>.087</td>
<td>-.109</td>
<td>-.977</td>
</tr>
</tbody>
</table>

The coefficient table above shows that the simple model that expresses how relationship new market strategy has a negative effect on customer demand and quality. The model is shown mathematically as follows: Y = a + bX where y is customer demand and quality and x is new market strategy, ‘a’ is a constant factor and b is the value of coefficient. From this table therefore, customer demand and quality = 5.838 - 0.85 new market strategy. Therefore, for every 100% increase in customer demand and quality, new market strategy has no contribution by – 0.85%. The above result implies that New market strategy has a negative significant relationship on customer demand and quality i.e. since our P value (3.3 2) is higher than 0.05. Thus, the decision would be to accept null hypothesis (Ho) and reject alternative hypothesis (H1). i.e. there is no significant relationship between customer demand and quality and new market strategy.

Table 5d

<table>
<thead>
<tr>
<th>New Market Strategy</th>
<th>Pearson Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Market Strategy</td>
<td>1</td>
</tr>
<tr>
<td>Consumer Demand and Quality</td>
<td>-.109</td>
</tr>
</tbody>
</table>
Table above explains the degree of association (relationship) between new market strategy and customer demand and quality. The result implies that there is a negative and low degree of relationship between new market strategy and customer demand and quality since Pearson correlation coefficient is -0.109. Also the correlation coefficient test value 0.332 is greater than 0.01 (Sig. level). Hence, it implies that as new market strategy increases customer demand and quality also decreases.

Discussions of Findings

Hypothesis One

The result from test of hypothesis one (1) revealed that product design has a significant, positive relationship with knowledge acquisition among footwear producers in Odeda Local Government area Abeokuta Ogun State, the result has R squared value of 0.174, P value of 0.000 and correlation coefficient at 0.417** this implies that new product design in footwear production will have impact on knowledge acquisition of footwear producer, based on our decision would be to reject null hypothesis (Ho) and accept alternative hypothesis (H1), i.e. there is a significant relationship between new product design and Knowledge acquisition of footwear producer. This result is in line with previous research of Semenenko, Dipl-Lng and Krikler (2004).

Hypothesis Two

The result from hypothesis confirmed the extent to which the variance in: New process method related with total footwear production is 11.3% i.e. (R square = 0.113). this means new process method has a significant relationship with total production of footwear production. It show that new process method has a positive effect on total production of footwear produced among footwear producer in Odeda local government Abeokuta ogun state. It implies that lager percent of respondent has adopt innovation in their work place .based on this result the decision would be to reject null hypothesis (Ho) and accept alternative hypothesis (H1). i.e. there is a significant relationship between New process method and total production of footwear production.
method and total production of footwear. More so Pearson correlation coefficient is 0.574. Also the correlation coefficient test value 0.000 is less than 0.01 (Sig. level). Hence, it also implies that as new process method increases total production also increase. This can be supported by the findings of shoe industry Weebly (2018)

Hypothesis Three
The result from hypothesis three revealed that there is no significant relationship between new market strategy and customer demand and quality with R square of 0.012 and P value of 0.332; this implies that new market strategy has a negative effect on customer demand and quality.

Also the correlation coefficient test value 0.332 is greater than 0.01 (Sig. level). Hence, it implies that as new market strategy increases customer demand and quality also decreases.

The implication of this is that the quality of footwear produced can only be determined by the type of material used in production in other hand the customer demanded in footwear production usually influence by quality of footwear not really by market strategy. Based on this our decision would be to accept null hypothesis (Ho) which says adoption of new market strategy cannot affect customer demand and quality of shoes and reject the alternative hypothesis (H1).

This go in line with work of Sneaker factory (2018) on determination of footwear quality.

Conclusion
The study assesses the impact of entrepreneurial Innovation in footwear production in meteorological condition in Odeda local government area Abeokuta Ogun state Nigeria. It has been revealed from the study that entrepreneurial Innovation is one of the importance factors that have contributed a lot in the study area. The study was able to establish that there is positive relationship between entrepreneurial Innovation and footwear production. The variables that were tested are new product design and Knowledge acquisition of footwear producer the results show positive relationships between depends and independent variables. Another variable tested is the new process method and total production and the results also proof that there is a positive relationships between them. Although the findings later showed that the relationship between market strategy and customers demand and quality of footwear is an inverse relationship, this show that the market strategy doesn’t really have impact on total demand of customers to footwear
but the design and process of method contribute greatly to knowledge acquisition and total production respectively.

Recommendations

Base on the conclusion of study the researcher therefore recommend that:

1. The footwear producer need to take into consideration the new product design to meet up with trends in the footwear industry and increase in their knowledge acquisition
2. The entrepreneur should employ new process method in footwear production so that they can be able to make their work faster and easier so as to increase total production
3. The footwear producer should always pay attention to how to increase customers demand through the use of good material and fashionable design that will attract customers demand not really relied on market strategy if the material and design doesn't attract the customer the market strategy cannot bring positive results.

REFERENCES

Cbinsights.com (2018)

Chris Caprice and Donald B Rosenfeld (2004); www.handle.net

Marketmedia.com (2019).

SGS (2014); Walking together to tackle the challenges in footwear and leather industry.
Shoe industry weebly.com (2019)
Shoepassion.com (2018)